Title of article :
Bayesian estimation of a bounded precision matrix
Author/Authors :
Tsukuma، نويسنده , , Hisayuki، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2014
Abstract :
The inverse of normal covariance matrix is called precision matrix and often plays an important role in statistical estimation problem. This paper deals with the problem of estimating the precision matrix under a quadratic loss, where the precision matrix is restricted to a bounded parameter space. Gauss’ divergence theorem with matrix argument shows that the unbiased and unrestricted estimator is dominated by a posterior mean associated with a flat prior on the bounded parameter space. Also, an improving method is given by considering an expansion estimator. A hierarchical prior is shown to improve on the posterior mean. An application is given for a Bayesian prediction in a random-effects model.
Keywords :
Inadmissibility , Orthogonal invariance , Statistical decision theory , restricted parameter space , Wishart distribution , Hierarchical prior , Random effect model , Uniform prior
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis