• Title of article

    Bayesian estimation of a bounded precision matrix

  • Author/Authors

    Tsukuma، نويسنده , , Hisayuki، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2014
  • Pages
    13
  • From page
    160
  • To page
    172
  • Abstract
    The inverse of normal covariance matrix is called precision matrix and often plays an important role in statistical estimation problem. This paper deals with the problem of estimating the precision matrix under a quadratic loss, where the precision matrix is restricted to a bounded parameter space. Gauss’ divergence theorem with matrix argument shows that the unbiased and unrestricted estimator is dominated by a posterior mean associated with a flat prior on the bounded parameter space. Also, an improving method is given by considering an expansion estimator. A hierarchical prior is shown to improve on the posterior mean. An application is given for a Bayesian prediction in a random-effects model.
  • Keywords
    Inadmissibility , Orthogonal invariance , Statistical decision theory , restricted parameter space , Wishart distribution , Hierarchical prior , Random effect model , Uniform prior
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2014
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1566688