Title of article :
Polar angle tangent vectors follow Cauchy distributions under spherical symmetry
Author/Authors :
Cacoullos، نويسنده , , T.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2014
Pages :
7
From page :
147
To page :
153
Abstract :
Let X = ( X 1 , … , X n ) ′ follow a spherically or elliptically symmetric distribution centered at zero, and Y i = X i + 1 / X 1 , Y = ( Y 1 , … , Y n − 1 ) ′ . It is shown that under spherical symmetry Y has a symmetric Cauchy distribution and under elliptical symmetry a general Cauchy distribution. Geometrically, Y is the tangent (or cotangent) vector of the polar angle θ 1 . The simple case of one ratio is treated in Arnold and Brockett (1992), Jones (1999, 2008). Moreover, it is shown that n − 1 cot θ 1 follows the t n − 1 distribution, so that the normal theory distributions of Student’s t and correlation coefficient r hold under spherical symmetry.
Keywords :
Multivariate Cauchy , Spherical symmetry , angular distribution , t -statistics , Component ratios distribution
Journal title :
Journal of Multivariate Analysis
Serial Year :
2014
Journal title :
Journal of Multivariate Analysis
Record number :
1566711
Link To Document :
بازگشت