Title of article
Generalized canonical correlation analysis for classification
Author/Authors
Shen، نويسنده , , Cencheng and Sun، نويسنده , , Ming and Tang، نويسنده , , Minh and Priebe، نويسنده , , Carey E.، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2014
Pages
13
From page
310
To page
322
Abstract
For multiple multivariate datasets, we derive conditions under which Generalized Canonical Correlation Analysis improves classification performance of the projected datasets, compared to standard Canonical Correlation Analysis using only two data sets. We illustrate our theoretical results with simulations and a real data experiment.
Keywords
Generalized canonical correlation analysis (GCCA) , Low-dimensional projection , Stiefel manifold , Classification
Journal title
Journal of Multivariate Analysis
Serial Year
2014
Journal title
Journal of Multivariate Analysis
Record number
1566805
Link To Document