Title of article :
Asymptotic expansion of the posterior density in high dimensional generalized linear models
Author/Authors :
Dasgupta، نويسنده , , Shibasish and Khare، نويسنده , , Kshitij and Ghosh، نويسنده , , Malay، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2014
Pages :
23
From page :
126
To page :
148
Abstract :
While developing a prior distribution for any Bayesian analysis, it is important to check whether the corresponding posterior distribution becomes degenerate in the limit to the true parameter value as the sample size increases. In the same vein, it is also important to understand a more detailed asymptotic behavior of posterior distributions. This is particularly relevant in the development of many nonsubjective priors. The present paper focuses on asymptotic expansions of posteriors for generalized linear models with canonical link functions when the number of regressors grows to infinity at a certain rate relative to the growth of the sample size. These expansions are then used to derive moment matching priors in the generalized linear model setting.
Keywords :
Generalized Linear Models , High dimensional inference , Moment matching priors , Canonical link function , Asymptotic expansion of the posterior
Journal title :
Journal of Multivariate Analysis
Serial Year :
2014
Journal title :
Journal of Multivariate Analysis
Record number :
1566839
Link To Document :
بازگشت