Title of article :
Sequential Monte Carlo filters for abruptly changing state estimation
Author/Authors :
Kim، نويسنده , , Sangil and Park، نويسنده , , Jeong-Soo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
194
To page :
201
Abstract :
Sequential Monte Carlo techniques are evaluated for the nonlinear Bayesian filtering problem applied to systems exhibiting rapid state transitions. When systems show a large disparity between states (long periods of random diffusion about states interspersed with relatively rapid transitions), sequential Monte Carlo methods suffer from the problem known as sample impoverishment. In this paper, we introduce the maximum entropy particle filter, a new technique for avoiding this problem. We demonstrate the effectiveness of the proposed technique by applying it to highly nonlinear dynamical systems in geosciences and econometrics and comparing its performance with that of standard particle-based filters such as the sequential importance resampling method and the ensemble Kalman filter.
Keywords :
Abrupt state transition , Bayesian filtering , Degeneracy problem , Maximum entropy particle filter , Sequential importance resampling
Journal title :
Probabilistic Engineering Mechanics
Serial Year :
2011
Journal title :
Probabilistic Engineering Mechanics
Record number :
1567903
Link To Document :
بازگشت