Title of article :
Numerical iterative methods for Markovian dependability and performability models: new results and a comparison
Author/Authors :
Suٌé، نويسنده , , Vيctor and Domingo، نويسنده , , José L. Miguel-Carrasco، نويسنده , , Juan A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
27
From page :
99
To page :
125
Abstract :
In this paper we deal with iterative numerical methods to solve linear systems arising in continuous-time Markov chain (CTMC) models. We develop an algorithm to dynamically tune the relaxation parameter of the successive over-relaxation method. We give a sufficient condition for the Gauss–Seidel method to converge when computing the steady-state probability vector of a finite irreducible CTMC, and a sufficient condition for the generalized minimal residual projection method not to converge to the trivial solution 0 when computing that vector. Finally, we compare several splitting-based iterative methods and a variant of the generalized minimal residual projection method.
Keywords :
Continuous-time Markov chains , dependability , Iterative numerical methods , performability
Journal title :
Performance Evaluation
Serial Year :
2000
Journal title :
Performance Evaluation
Record number :
1569131
Link To Document :
بازگشت