Title of article :
Learning in the feed-forward random neural network: A critical review
Author/Authors :
Georgiopoulos، نويسنده , , Michael and Li، نويسنده , , Cong and Kocak، نويسنده , , Taskin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
The Random Neural Network (RNN) has received, since its inception in 1989, considerable attention and has been successfully used in a number of applications. In this critical review paper we focus on the feed-forward RNN model and its ability to solve classification problems. In particular, we paid special attention to the RNN literature related with learning algorithms that discover the RNN interconnection weights, suggested other potential algorithms that can be used to find the RNN interconnection weights, and compared the RNN model with other neural-network based and non-neural network based classifier models. In review, the extensive literature review and experimentation with the RNN feed-forward model provided us with the necessary guidance to introduce six critical review comments that identify some gaps in the RNN’s related literature and suggest directions for future research.
Keywords :
art , SVM , CART , Random neural network , Learning , gradient descent , multi-layer perceptron , Evolutionary Neural Networks , Multi-Objective optimization , Error functions
Journal title :
Performance Evaluation
Journal title :
Performance Evaluation