Title of article :
Using Markov Chain Monte Carlo methods to solve full Bayesian modeling of PWR vessel flaw distributions
Author/Authors :
Celeux، نويسنده , , G. and Persoz، نويسنده , , M. and Wandji، نويسنده , , J.N. and Perrot، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
10
From page :
243
To page :
252
Abstract :
We present a hierarchical Bayesian method for estimating the density and size distribution of subclad-flaws in French Pressurized Water Reactor (PWR) vessels. This model takes into account in-service inspection (ISI) data, a flaw size-dependent probability of detection (different functions are considered) with a threshold of detection, and a flaw sizing error distribution (different distributions are considered). The resulting model is identified through a Markov Chain Monte Carlo (MCMC) algorithm. The article includes discussion for choosing the prior distribution parameters and an illustrative application is presented highlighting the modelʹs ability to provide good parameter estimates even when a small number of flaws are observed.
Keywords :
Flaw size , Flaw density , Probability of detection , Weibull distribution , Missing data , Bayesian model , Markov chain Monte Carlo , Gibbs sampler , Log-normal Distribution
Journal title :
Reliability Engineering and System Safety
Serial Year :
1999
Journal title :
Reliability Engineering and System Safety
Record number :
1570819
Link To Document :
بازگشت