Title of article :
Remote sensing of aerosols optical thickness over various sites using SeaWiFS or VEGETATION and ground measurements
Author/Authors :
Borde، نويسنده , , Régis and Verdebout، نويسنده , , Jean، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
A key problem in aerosol retrieval is to distinguish between surface and atmospheric contributions to the variability in the satellite signal. A major contribution in the surface-related variability is caused by the non-Lambertian nature of the Earth surface reflectance and the fact that the illumination/observation geometry varies considerably between successive observations of the same area (with a polar orbiting sensor). In principle, if the surface boundary condition can be specified with sufficient accuracy by means of a bidirectional reflectance distribution function (BRDF), the two contributions can be unfolded and aerosol information retrieved. This approach has been tested using combined datasets made of satellite measured “top of atmosphere” (TOA) radiance and corresponding ground estimation of the aerosol optical thickness. Studying a time series of data, taking into account geometrical conditions and assuming the ground BRDF to be constant during the time period, a coupled surface/atmosphere model was used to investigate the retrieval of aerosol optical thickness (AOT) over several sites. By fitting a subset of satellite observations associated with ground photometer data, a best fit of BRDF model parameters could be determined. This surface characterization is then used to reduce the model unknowns to AOT only and thereby to permit its retrieval from the satellite data alone, by means of a simple inversion process. The study was conducted on three European AERONET sites and using satellite data from both the VEGETATION and Sea viewing Wide Field of view (SeaWiFS) sensors. In all cases, the AOT retrieved from satellite was in good agreement with the measurements.
Keywords :
BRDF , Remote sensing , Sun photometer measurements , Aerosol optical thickness
Journal title :
Remote Sensing of Environment
Journal title :
Remote Sensing of Environment