Title of article :
A comparison of 18 winter seasons of in situ and passive microwave-derived snow water equivalent estimates in Western Canada
Author/Authors :
Derksen، نويسنده , , C and Walker، نويسنده , , A and Goodison، نويسنده , , B، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
The Meteorological Service of Canada (MSC) has developed an operational snow water equivalent (SWE) retrieval algorithm suite for western Canada that can be applied to both Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) data. Separate algorithms derive SWE for open environments, deciduous, coniferous, and sparse forest cover. A final SWE value represents the area-weighted average based on the proportional land cover within each pixel. The combined SSM/I and SMMR time series of dual polarized, multichannel, spaceborne passive microwave brightness temperatures extends back to 1978, providing a lengthy time series for algorithm assessment. In this study, 5-day average (pentad) passive microwave-derived SWE imagery for 18 winter seasons (December, January, February 1978/79 through 1995/96) was compared to SWE estimates taken from a distributed network of surface measurements throughout western Canada.
s indicated both vegetative and snowpack controls on the performance of MSC algorithms. In regions of open and low-density forest cover, the in situ and passive microwave SWE data exhibited both strong agreement and similar levels of interannual variability. In locations where winter season SWE typically exceeded 75 mm, and/or dense vegetative cover was present, dataset agreement weakened appreciably, with little interannual variability in the passive microwave SWE retrievals. These results have important implications for extending the SWE monitoring capability of the MSC algorithm suite to northern regions such as the Mackenzie River basin.
Keywords :
SSM/I , SMMR , Passive microwave , Snow water equivalent
Journal title :
Remote Sensing of Environment
Journal title :
Remote Sensing of Environment