Title of article :
Smoothing methodology for predicting regional averages in multi-source forest inventory
Author/Authors :
Koistinen، نويسنده , , Petri and Holmstrِm، نويسنده , , Lasse and Tomppo، نويسنده , , Erkki، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
862
To page :
871
Abstract :
The paper examines alternative non-parametric estimation methods or smoothing methods in the context of the Finnish multi-source forest inventory. It uses satellite images in addition to field data to produce forest variable predictions for regions ranging from the single pixel level up to the national level. With the help of the bias-variance decomposition, the influence of the smoothing parameters on prediction accuracy is considered when the smootherʹs pixel-level predictions are averaged in order to produce predictions for larger areas. A novel variation of cross-validation, called region-wise cross-validation, is proposed for selecting the smoothing parameters. Experimental results are presented using local linear ridge regression (LLRR), which is a variant of the better known local linear regression method.
Keywords :
Non-parametric regression , Smoothing parameter selection , Local linear ridge regression , cross-validation , k-Nearest neighbor method , Satellite Images
Journal title :
Remote Sensing of Environment
Serial Year :
2008
Journal title :
Remote Sensing of Environment
Record number :
1575327
Link To Document :
بازگشت