Title of article :
Use of a dark object concept and support vector machines to automate forest cover change analysis
Author/Authors :
Huang، نويسنده , , Chengquan and Song، نويسنده , , Kuan and Kim، نويسنده , , Sunghee and Townshend، نويسنده , , John R.G. and Davis، نويسنده , , Paul and Masek، نويسنده , , Jeffrey G. and Goward، نويسنده , , Samuel N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
16
From page :
970
To page :
985
Abstract :
An automated method was developed for mapping forest cover change using satellite remote sensing data sets. This multi-temporal classification method consists of a training data automation (TDA) procedure and uses the advanced support vector machines (SVM) algorithm. The TDA procedure automatically generates training data using input satellite images and existing land cover products. The derived high quality training data allow the SVM to produce reliable forest cover change products. This approach was tested in 19 study areas selected from major forest biomes across the globe. In each area a forest cover change map was produced using a pair of Landsat images acquired around 1990 and 2000. High resolution IKONOS images and independently developed reference data sets were available for evaluating the derived change products in 7 of those areas. The overall accuracy values were over 90% for 5 areas, and were 89.4% and 89.6% for the remaining two areas. The userʹs and producerʹs accuracies of the forest loss class were over 80% for all 7 study areas, demonstrating that this method is especially effective for mapping major disturbances with low commission errors. IKONOS images were also available in the remaining 12 study areas but they were either located in non-forest areas or in forest areas that did not experience forest cover change between 1990 and 2000. For those areas the IKONOS images were used to assist visual interpretation of the Landsat images in assessing the derived change products. This visual assessment revealed that for most of those areas the derived change products likely were as reliable as those in the 7 areas where accuracy assessment was conducted. The results also suggest that images acquired during leaf-off seasons should not be used in forest cover change analysis in areas where deciduous forests exist. Being highly automatic and with demonstrated capability to produce reliable change products, the TDA-SVM method should be especially useful for quantifying forest cover change over large areas.
Keywords :
Forest cover change , Training data automation , Landsat , SVM , Integrated forest index
Journal title :
Remote Sensing of Environment
Serial Year :
2008
Journal title :
Remote Sensing of Environment
Record number :
1575335
Link To Document :
بازگشت