Title of article :
Sensitivity of the Indian Ocean circulation to phytoplankton forcing using an ocean model
Author/Authors :
Subrahmanyam، نويسنده , , Bulusu and Ueyoshi، نويسنده , , Kyozo and Morrison، نويسنده , , John M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Most ocean general circulation models (OGCMs) do not take into account the effect of space- and time-varying phytoplankton on solar radiation penetration, or do it in a simplistic way using a constant attenuation depth, even though one-dimensional experiments have shown potential significant effect of phytoplankton on mixed-layer dynamics. Since some ocean basins are biologically active, it is necessary for an OGCM to take water turbidity into account, even if it is not coupled with a biological model. Sensitivity experiments carried out with the Massachusetts Institute of Technology (MIT) OGCM with spatially and temporally-varying pigment concentration from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data during 1998–2003 reveal the effect of ocean turbidity on tropical Indian Ocean circulation. Variations of light-absorbing phytoplankton pigments change the vertical distribution of solar heating in the mixed layer, thereby affecting upper-ocean circulation. A simulation was performed from 1948 to 2003 with a constant minimum pigment concentration of 0.02 mg m− 3 while another simulation was performed from September 1997 to December 2003 with variable pigment concentration, and the differences between these two simulations allow us to quantify the effects of phytoplankton on solar radiation penetration in the ocean model. Model results from a period of 6 years (1998–2003) show large seasonal variability in the strength of the meridional overturning circulation (MOC), meridional heat transports (MHT), and equatorial under current (EUC). The MOC mass transport changes by 2 to 5 Sv (1 Sv = 106 m3 s− 1) between boreal winter (January) and boreal summer (July), with a corresponding change in the MHT of ∼ 0.05 PW (1 PW = 1015 W) in boreal winter, which is close to the expected change associated with a significant climate change [Shell, K., Frouin, R., Nakamoto, S., & Somerville, R.C.J. (2003): Atmospheric response to solar radiation absorbed by phytoplankton. Journal of Geophysical Research, 108(D15), 4445. doi:10.1029/2003JD003440.]. In addition, changes in phytoplankton pigments concentration are associated with a reduction in the EUC by ∼ 3 cm s− 1. We discuss the possible physical mechanisms behind this variability, and the necessity of including phytoplankton forcing in the OGCM.
Keywords :
Indian Ocean , Meridional overturning circulation (MOC) , phytoplankton , Chlorophyll , MIT model , OGCM
Journal title :
Remote Sensing of Environment
Journal title :
Remote Sensing of Environment