Title of article :
Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover
Author/Authors :
Daughtry، نويسنده , , C.S.T. and Hunt Jr.، نويسنده , , E.R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
11
From page :
1647
To page :
1657
Abstract :
Crop residues on the soil surface decrease soil erosion and increase soil organic carbon and the management of crop residues is an integral part of many conservation tillage systems. Current methods of measuring residue cover are inadequate for characterizing the spatial variability of residue cover over large fields. The objectives of this research were to determine the effects of water content on the remotely sensed estimates of crop residue cover and to propose a method to mitigate the effects of water content on remotely sensed estimates of crop residue cover. Reflectance spectra of crop residues and soils were measured in the lab over the 400–2400 nm wavelength region. Reflectance of scenes with various residue cover fractions and water contents was simulated using a linear mixture model. Additional spectra of scenes with mixtures of crop residues and soil were also acquired in corn, soybean, and wheat fields with different tillage treatments and different water content conditions. Crop residue cover was linearly related to the cellulose absorption index (CAI), which was defined as the relative intensity of an absorption feature near 2100 nm. Water in the crop residue significantly attenuated CAI and changed the slope of the residue cover vs. CAI relationship. Without an appropriate correction, crop residue covers were underestimated as scene water content increased. Spectral vegetation water indices were poorly related to changes in the water contents of crop residues and soils. A new reflectance ratio water index that used the two bands located on the shoulders of the cellulose absorption feature to estimate scene water conditions was proposed and tested with data from corn, soybean, and wheat fields. The ratio water index was used to describe the changes in the slope of crop residue cover vs. CAI and improve the predictions of crop residue cover. These results indicate that spatial and temporal adjustments in the spectral estimates of crop residue cover are possible. Current mutispectral imaging systems will not provide reliable estimates of crop residue cover when scene water content varies. Hyperspectral data are not required, because the three narrow bands that are used for both CAI and the scene moisture correction could be incorporated in advanced multispectral sensors. Thus, regional surveys of soil conservation practices that affect soil carbon dynamics may be feasible using either advanced multispectral or hyperspectral imaging systems.
Keywords :
Crop residue cover , Cellulose absorption index , Spectral moisture index , Reflectance spectra
Journal title :
Remote Sensing of Environment
Serial Year :
2008
Journal title :
Remote Sensing of Environment
Record number :
1575384
Link To Document :
بازگشت