• Title of article

    Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets

  • Author/Authors

    Herold، نويسنده , , M. J. Mayaux، نويسنده , , P. and Woodcock، نويسنده , , C.E. and Baccini، نويسنده , , A. and Schmullius، نويسنده , , C.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    19
  • From page
    2538
  • To page
    2556
  • Abstract
    Many investigators need and use global land cover maps for a wide variety of purposes. Ironically, after many years of very limited availability, there are now multiple global land cover maps and it is not readily apparent (1) which is most useful for particular applications or (2) how to combine the different maps to provide an improved dataset. The existing global land cover maps at 1 km spatial resolution have arisen from different initiatives and are based on different remote sensing data and employed different methodologies. Perhaps more significantly, they have different legends. As a result, comparison of the different land cover maps is difficult and information about their relative utility is limited. In an attempt to compare the datasets and assess their strengths and weaknesses we harmonized the thematic legends of four available coarse-resolution global land cover maps (IGBP DISCover, UMD, MODIS 1-km, and GLC2000) using the LCCS-based land cover legend translation protocols. Analysis of the agreement among the global land cover maps and existing validation information highlights general patterns of agreement, inconsistencies and uncertainties. The thematic classes of Evergreen broadleaf trees, Snow and Ice, and Barren show high producer and user accuracy and good agreement among the datasets, while classes of mixed tree types show high commission errors. Overall, the results show a limited ability of the four global products to discriminate mixed classes characterized by a mosaic of trees, shrubs, and herbaceous vegetation. There is a strong relationship between class accuracy, spatial agreement among the datasets, and the heterogeneity of landscapes. Suggestions for future mapping projects include careful definition of mixed unit classes, and improvement in mapping heterogeneous landscapes.
  • Keywords
    Global land cover , Harmonization , LCCS , Validation
  • Journal title
    Remote Sensing of Environment
  • Serial Year
    2008
  • Journal title
    Remote Sensing of Environment
  • Record number

    1575449