Title of article :
Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels
Author/Authors :
Asner، نويسنده , , Gregory P. and Martin، نويسنده , , Roberta E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Variation in the foliar chemistry of humid tropical forests is poorly understood, and airborne imaging spectroscopy could provide useful information at leaf and canopy scales. However, variation in canopy structure affects our ability to estimate foliar properties from airborne spectrometer data, yet these structural affects remain poorly quantified. Using leaf spectral (400–2500 nm) and chemical data collected from 162 Australian tropical forest species, along with partial least squares (PLS) analysis and canopy radiative transfer modeling, we determined the strength of the relationship between canopy reflectance and foliar properties under conditions of varying canopy structure.
leaf level, chlorophylls, carotenoids and specific leaf area (SLA) were highly correlated with leaf spectral reflectance (r = 0.90–0.91). Foliar nutrients and water were also well represented by the leaf spectra (r = 0.79–0.85). When the leaf spectra were incorporated into the canopy radiative transfer simulations with an idealistic leaf area index (LAI) = 5.0, correlations between canopy reflectance spectra and leaf properties increased in strength by 4–18%. The effects of random LAI (= 3.0–6.5) variation on the retrieval of leaf properties remained minimal, particularly for pigments and SLA (r = 0.92–0.93). In contrast, correlations between leaf nitrogen (N) and canopy reflectance estimates decreased from r = 0.87 at constant LAI = 5 to r = 0.65 with randomly varying LAI = 3.0–6.5. Progressive increases in the structural variability among simulated tree crowns had relatively little effect on pigment, SLA and water predictions. However, N and phosphorus (P) were more sensitive to canopy structural variability. Our modeling results suggest that multiple leaf chemicals and SLA can be estimated from leaf and canopy reflectance spectroscopy, and that the high-LAI canopies found in tropical forests enhance the signal via multiple scattering. Finally, the two factors we found to most negatively impact leaf chemical predictions from canopy reflectance were variation in LAI and viewing geometry, which can be managed with new airborne technologies and analytical methods.
Keywords :
radiative transfer , Canopy structure , Tropical forest , partial least squares , Imaging spectroscopy , Hyperspectral , Canopy chemistry
Journal title :
Remote Sensing of Environment
Journal title :
Remote Sensing of Environment