Title of article :
Malʹtsev and retral spaces
Author/Authors :
Gartside، نويسنده , , P.M. and Reznichenko، نويسنده , , E.A. and Sipacheva، نويسنده , , O.V.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1997
Abstract :
A space X is Malʹtsev if there exists a continuous map M : X3 → X such that M(x, y, y) = x = M(y, y, x). A space X is retral if it is a retract of a topological group. Every retral space is Malʹtsev. General methods for constructing Malʹtsev and retral spaces are given. An example of a Malʹtsev space which is not retral is presented. An example of a Lindelöf topological group with cellularity the continuum is presented. Constraints on the examples are examined.
Keywords :
Malיtsev spaces , Retral spaces , Topological group , Cellularity , Compact spaces , Relative cellularity
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications