Title of article :
Large deviations for moving average processes
Author/Authors :
Jiang، نويسنده , , Tiefeng and Rao، نويسنده , , M.Bhaskara and Wang، نويسنده , , Xiangchen Fang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Abstract :
Let Z = {hellip;, − 1, 0, 1, …}, ξ, ξn, n ϵ Z a doubly infinite sequence of i.i.d. random variables in a separable Banach space B, and an, n ϵ Z, a doubly infinite sequence of real numbers with 0 ≠ ∑n ϵ z|an| < ∞. Set Xn = ∑iϵzaiξi + n, n ⩾ 1. In this article, we prove that (X1 + X2 + … + Xn)n, n ⩾ 1 satisfies the upper bound of the large deviation principle if and only if E exp qk(ξ) < ∞, for some compact subset K of B, where qk(·) is the Minkowski functional of the set K. Interestingly enough, however, the lower bound holds without any conditions at all! We will also present an asymptotic property of the corresponding rate function.
Keywords :
Large deviations , Moving average processes , Rate functions , truncation
Journal title :
Stochastic Processes and their Applications
Journal title :
Stochastic Processes and their Applications