Title of article
Large deviations for moving average processes
Author/Authors
Jiang، نويسنده , , Tiefeng and Rao، نويسنده , , M.Bhaskara and Wang، نويسنده , , Xiangchen Fang، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1995
Pages
12
From page
309
To page
320
Abstract
Let Z = {hellip;, − 1, 0, 1, …}, ξ, ξn, n ϵ Z a doubly infinite sequence of i.i.d. random variables in a separable Banach space B, and an, n ϵ Z, a doubly infinite sequence of real numbers with 0 ≠ ∑n ϵ z|an| < ∞. Set Xn = ∑iϵzaiξi + n, n ⩾ 1. In this article, we prove that (X1 + X2 + … + Xn)n, n ⩾ 1 satisfies the upper bound of the large deviation principle if and only if E exp qk(ξ) < ∞, for some compact subset K of B, where qk(·) is the Minkowski functional of the set K. Interestingly enough, however, the lower bound holds without any conditions at all! We will also present an asymptotic property of the corresponding rate function.
Keywords
Large deviations , Moving average processes , Rate functions , truncation
Journal title
Stochastic Processes and their Applications
Serial Year
1995
Journal title
Stochastic Processes and their Applications
Record number
1575779
Link To Document