• Title of article

    Large deviations for moving average processes

  • Author/Authors

    Jiang، نويسنده , , Tiefeng and Rao، نويسنده , , M.Bhaskara and Wang، نويسنده , , Xiangchen Fang، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1995
  • Pages
    12
  • From page
    309
  • To page
    320
  • Abstract
    Let Z = {hellip;, − 1, 0, 1, …}, ξ, ξn, n ϵ Z a doubly infinite sequence of i.i.d. random variables in a separable Banach space B, and an, n ϵ Z, a doubly infinite sequence of real numbers with 0 ≠ ∑n ϵ z|an| < ∞. Set Xn = ∑iϵzaiξi + n, n ⩾ 1. In this article, we prove that (X1 + X2 + … + Xn)n, n ⩾ 1 satisfies the upper bound of the large deviation principle if and only if E exp qk(ξ) < ∞, for some compact subset K of B, where qk(·) is the Minkowski functional of the set K. Interestingly enough, however, the lower bound holds without any conditions at all! We will also present an asymptotic property of the corresponding rate function.
  • Keywords
    Large deviations , Moving average processes , Rate functions , truncation
  • Journal title
    Stochastic Processes and their Applications
  • Serial Year
    1995
  • Journal title
    Stochastic Processes and their Applications
  • Record number

    1575779