• Title of article

    Metric dimension of the intersections of a point set with hyperplanes

  • Author/Authors

    Goto، نويسنده , , Tatsuo، نويسنده ,

  • Issue Information
    دوماهنامه با شماره پیاپی سال 1998
  • Pages
    9
  • From page
    161
  • To page
    169
  • Abstract
    In this paper we improve the construction of Goto (1993) to obtain the Main Theorem: Let n, m and k be arbitrary integers such that 0 ⩽ m ⩽ n − 1 ⩾ 1 and m ⩽ k ⩽ min{2m, n − 1}. Then there exists a point set Xm,kn in Euclidean n-space Rn such that 1. imXm,kn = m and dim Xm,kn = k, dim(Xm,kn ∩ H) = m for every hyperplane H in Rn, and if either k < n − 1 or k = n − 1 = m, then dim(Xm,kn ∩ H) = k for every hyperplane H in Rn. im (respectively μdim) denotes covering (respectively metric) dimension, and by a hyperplane in Rn we mean an (n − 1)-dimensional affine subspace of Rn.
  • Keywords
    Hyperplane , Point set , metric dimension , Covering dimension
  • Journal title
    Topology and its Applications
  • Serial Year
    1998
  • Journal title
    Topology and its Applications
  • Record number

    1575782