Title of article
Metric dimension of the intersections of a point set with hyperplanes
Author/Authors
Goto، نويسنده , , Tatsuo، نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 1998
Pages
9
From page
161
To page
169
Abstract
In this paper we improve the construction of Goto (1993) to obtain the Main Theorem: Let n, m and k be arbitrary integers such that 0 ⩽ m ⩽ n − 1 ⩾ 1 and m ⩽ k ⩽ min{2m, n − 1}. Then there exists a point set Xm,kn in Euclidean n-space Rn such that 1.
imXm,kn = m and dim Xm,kn = k,
dim(Xm,kn ∩ H) = m for every hyperplane H in Rn, and
if either k < n − 1 or k = n − 1 = m, then dim(Xm,kn ∩ H) = k for every hyperplane H in Rn.
im (respectively μdim) denotes covering (respectively metric) dimension, and by a hyperplane in Rn we mean an (n − 1)-dimensional affine subspace of Rn.
Keywords
Hyperplane , Point set , metric dimension , Covering dimension
Journal title
Topology and its Applications
Serial Year
1998
Journal title
Topology and its Applications
Record number
1575782
Link To Document