Title of article :
Metric dimension of the intersections of a point set with hyperplanes
Author/Authors :
Goto، نويسنده , , Tatsuo، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1998
Pages :
9
From page :
161
To page :
169
Abstract :
In this paper we improve the construction of Goto (1993) to obtain the Main Theorem: Let n, m and k be arbitrary integers such that 0 ⩽ m ⩽ n − 1 ⩾ 1 and m ⩽ k ⩽ min{2m, n − 1}. Then there exists a point set Xm,kn in Euclidean n-space Rn such that 1. imXm,kn = m and dim Xm,kn = k, dim(Xm,kn ∩ H) = m for every hyperplane H in Rn, and if either k < n − 1 or k = n − 1 = m, then dim(Xm,kn ∩ H) = k for every hyperplane H in Rn. im (respectively μdim) denotes covering (respectively metric) dimension, and by a hyperplane in Rn we mean an (n − 1)-dimensional affine subspace of Rn.
Keywords :
Hyperplane , Point set , metric dimension , Covering dimension
Journal title :
Topology and its Applications
Serial Year :
1998
Journal title :
Topology and its Applications
Record number :
1575782
Link To Document :
بازگشت