Title of article
Coincidence theorems for involutions
Author/Authors
Aarts، نويسنده , , Jan M. and Fokkink، نويسنده , , Robbert J. and Vermeer، نويسنده , , Hans، نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 1998
Pages
6
From page
3
To page
8
Abstract
Ščepin (1974) and Izydorek and Jaworowski (1995, 1996) showed that for each k and n such that 2k > n there exists a contractible k-dimensional simplicial complex Y and a continuous map ϑ:Sn → Y without the antipodal coincidence property, i.e., ϑ(x) /ne ϑ(−x) for all x ϵ Sn. On the other hand, if 2k ⩽ n then every map ϑ:Sn → Y to a k-dimensional simplicial complex has an antipodal coincidence point. In this paper it is shown that, with some minor modifications, these results remain valid when Sn and the antipodal map are replaced by any normal space and an involution with color number n + 2.
Keywords
Coloring of involutions , Antipodal coincidence
Journal title
Topology and its Applications
Serial Year
1998
Journal title
Topology and its Applications
Record number
1575881
Link To Document