• Title of article

    Coincidence theorems for involutions

  • Author/Authors

    Aarts، نويسنده , , Jan M. and Fokkink، نويسنده , , Robbert J. and Vermeer، نويسنده , , Hans، نويسنده ,

  • Issue Information
    دوماهنامه با شماره پیاپی سال 1998
  • Pages
    6
  • From page
    3
  • To page
    8
  • Abstract
    Ščepin (1974) and Izydorek and Jaworowski (1995, 1996) showed that for each k and n such that 2k > n there exists a contractible k-dimensional simplicial complex Y and a continuous map ϑ:Sn → Y without the antipodal coincidence property, i.e., ϑ(x) /ne ϑ(−x) for all x ϵ Sn. On the other hand, if 2k ⩽ n then every map ϑ:Sn → Y to a k-dimensional simplicial complex has an antipodal coincidence point. In this paper it is shown that, with some minor modifications, these results remain valid when Sn and the antipodal map are replaced by any normal space and an involution with color number n + 2.
  • Keywords
    Coloring of involutions , Antipodal coincidence
  • Journal title
    Topology and its Applications
  • Serial Year
    1998
  • Journal title
    Topology and its Applications
  • Record number

    1575881