Title of article :
Cones that are cells, and an application to hyperspaces
Author/Authors :
Ancel، نويسنده , , Fredric D. and Nadler Jr، نويسنده , , Sam B.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1999
Abstract :
Let Y be a compact metric space that is not an (n−1)-sphere. If the cone over Y is an n-cell, then Y×[0,1] is an n-cell; if n≤4, then Y is an (n−1)-cell. Examples are given to show that the converse of the first part is false (for n≥5) and that the second part does not extend beyond n=4. An application concerning when hyperspaces of simple n-ods are cones over unique compacta is given, which answers a question of Charatonik.
Keywords :
cone , Continuum , Dimensional component , Hyperspace , n-cell , Geometric cone , manifold , n-sphere , simply connected , Compactum , Collared , Cantor manifold , Dimension , Shrinking criterion , ARC , Z-set , Suspension
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications