Title of article :
A generalized Nielsen number and multiplicity results for differential inclusions
Author/Authors :
Andres، نويسنده , , Jan and Gَrniewicz، نويسنده , , Lech and Jezierski، نويسنده , , Jerzy، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2000
Pages :
17
From page :
193
To page :
209
Abstract :
The Nielsen number is defined for a rather general class of multivalued maps on compact connected ANRs, including, e.g., admissible maps (in the sense of Gَrniewicz (1976); compare also Gَrniewicz (1995)) on tori. Since the Poincaré maps generated by the Marchaud vector fields are of this type (see (Andres, 1997)), we can obtain in such a way multiplicity results for differential inclusions. More precisely, the nontrivial Nielsen number gives a lower estimate of coincidence points (in particular, fixed points) corresponding to the desired solutions.
Keywords :
Nielsen number , Number of coincidences , Admissible pairs , Differential inclusions , Multiplicity results
Journal title :
Topology and its Applications
Serial Year :
2000
Journal title :
Topology and its Applications
Record number :
1576157
Link To Document :
بازگشت