Title of article :
Estimation of the dependence parameter in linear regression with long-range-dependent errors
Author/Authors :
Giraitis، نويسنده , , Liudas and Koul، نويسنده , , Hira، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
18
From page :
207
To page :
224
Abstract :
This paper establishes the consistency and the root-n asymptotic normality of the exact maximum likelihood estimator of the dependence parameter in linear regression models where the errors are a nondecreasing function of a long-range-dependent stationary Gaussian process. The spectral density of the Gaussian process is assumed to be unbounded at the origin. The paper thus generalizes some of the results of Dahlhaus (1989) to linear regression models with non-Gaussian long-range-dependent errors.
Keywords :
Maximum likelihood estimator , Unbounded spectral density , n12-asymptotic normality , Logistic and double-exponential marginal errors , Polynomial regression
Journal title :
Stochastic Processes and their Applications
Serial Year :
1997
Journal title :
Stochastic Processes and their Applications
Record number :
1576172
Link To Document :
بازگشت