Title of article :
On Dranishnikovʹs cell-like resolution
Author/Authors :
Koyama، نويسنده , , Akira and Yokoi، نويسنده , , Katsuya، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2001
Abstract :
We prove the following theorem:
m 1. For a compactum X with c-dimZ/pX⩽n and c-dimZ(q)X⩽n for some distinct prime numbers p,q, and c-dimZX⩽n+1, where n>1, there exists an (n+1)-dimensional compactum Z with c-dimZ/pZ⩽n, c-dimZ(q)Z⩽n and a cell-like map f :Z→X.
er, giving the following theorem, we note that Theorem 1 cannot be true in the case of n=1.
m 2. For every pair p,q of distinct prime numbers there exists an infinite-dimensional compactum X such that c-dimZ/pX=1, c-dimZ(q)X=1 and c-dimZX=2.
Keywords :
Cohomological dimension , Cell-like resolution , Edwards–Walsh resolution
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications