Title of article :
On questions of strict contractibility
Author/Authors :
Dydak، نويسنده , , J. and Segal، نويسنده , , J. and Spie?، نويسنده , , S.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2002
Pages :
9
From page :
67
To page :
75
Abstract :
A space X is strictly contractible to a point x0∈X if there exists a homotopy H :X×[0,1]→X starting at the identity such that H(x,t)=x0 if and only if either x=x0 or t=1. Michael proved that if E is a locally compact and non-compact space then E×0 is a perfect retract of the product E×[0,1) if and only if the one-point compactification E∗=E∪x∗ of E is strictly contractible to x∗. We answer some questions posed by Michael [Closed retracts and perfect retracts, Topology Appl., to appear] and we characterize strictly contractible ANRs in shape-theoretic terms.
Keywords :
Shape , Strong shape , Strong convexity , Collapsibility , Strict contractibility , AR
Journal title :
Topology and its Applications
Serial Year :
2002
Journal title :
Topology and its Applications
Record number :
1576392
Link To Document :
بازگشت