Title of article :
A universal separable metric space based on the triangular Sierpiński curve
Author/Authors :
Ivansic، Dubravko نويسنده , , Ivan and Milutinovi?، نويسنده , , Uro?، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2002
Pages :
35
From page :
237
To page :
271
Abstract :
Let Σ(3) be the triangular Sierpiński curve. Call the vertices of the triangles obtained during the construction of Σ(3) (with the exception of the first triangle) the rational points of Σ(3), and all other points the irrational points of Σ(3). results of Lipscomb [Trans. Amer. Math. Soc. 211 (1975) 143–160] and techniques and results of Milutinović [Ph.D. thesis, 1993], [Glas. Mat. Ser. III 27 (47) (1992) 343–364], we prove that Ln(3)={x∈Σ(3)n+1: at least one coordinate of x is irrational} is a universal space for all separable metrizable spaces of dimension ⩽n.
Keywords :
Covering dimension , Sierpi?ski curve , Universal space , Lipscombיs universal space , embedding , Decompositions of topological spaces
Journal title :
Topology and its Applications
Serial Year :
2002
Journal title :
Topology and its Applications
Record number :
1576414
Link To Document :
بازگشت