Title of article :
Asymptotics for Voronoi tessellations on random samples
Author/Authors :
McGivney، نويسنده , , K. and Yukich، نويسنده , , J.E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
16
From page :
273
To page :
288
Abstract :
Let V(X1,…,Xn) denote the total edge length of the Voronoi tessellation on random variables X1,…,Xn. If X1,X2,… are independent and have a common continuous density f(x) on the unit square which is bounded away from 0 and ∞ then it is shown thatlimn→∞V(X1,…,Xn)n1/2=2∫[0,1]2(f(x))1/2 dx c.c.,where c.c. denotes complete convergence.
Keywords :
Complete convergence , Voronoi tessellation , Delaunay triangulation , Subadditive and superadditive Euclidean functionals
Journal title :
Stochastic Processes and their Applications
Serial Year :
1999
Journal title :
Stochastic Processes and their Applications
Record number :
1576525
Link To Document :
بازگشت