Title of article :
Indecomposability and the structure of periodic orbits for interval maps
Author/Authors :
Ryden، نويسنده , , David J.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2003
Pages :
14
From page :
263
To page :
276
Abstract :
Suppose f :[a,b]→[a,b] is continuous. Barge and Martin, and Ingram have shown that if the inverse limit of {[a,b],f} is hereditarily decomposable, then the period of every periodic orbit of f is a power of two. We will elaborate on the structure of these orbits, and, assuming f is a Markov map whose partition is a single periodic orbit, give necessary and sufficient conditions for the inverse limit to be (1) decomposable and (2) hereditarily decomposable.
Keywords :
Continuum , Inverse limit , Markov map , Periodic , Indecomposable , BLOCK
Journal title :
Topology and its Applications
Serial Year :
2003
Journal title :
Topology and its Applications
Record number :
1576681
Link To Document :
بازگشت