Title of article :
On optional stopping of some exponential martingales for Lévy processes with or without reflection
Author/Authors :
Asmussen، نويسنده , , Sّren and Kella، نويسنده , , Offer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
9
From page :
47
To page :
55
Abstract :
Kella and Whitt (J. Appl. Probab. 29 (1992) 396) introduced a martingale {Mt} for processes of the form Zt=Xt+Yt where {Xt} is a Lévy process and Yt satisfies certain regularity conditions. In particular, this provides a martingale for the case where Yt=Lt where Lt is the local time at zero of the corresponding reflected Lévy process. In this case {Mt} involves, among others, the Lévy exponent ϕ(α) and Lt. In this paper, conditions for optional stopping of {Mt} at τ are given. The conditions depend on the signs of α and ϕ(α). In some cases optional stopping is always permissible. In others, the conditions involve the well-known necessary and sufficient condition for optional stopping of the Wald martingale {eαXt−tϕ(α)}, namely that P̃(τ<∞)=1 where P̃ corresponds to a suitable exponentially tilted Lévy process.
Keywords :
Local time , Stopping time , Wald martingale , Lévy process , Exponential change of measure
Journal title :
Stochastic Processes and their Applications
Serial Year :
2001
Journal title :
Stochastic Processes and their Applications
Record number :
1576745
Link To Document :
بازگشت