Title of article :
On stochastic partial differential equations with spatially correlated noise: smoothness of the law
Author/Authors :
A. and Mلrquez-Carreras، نويسنده , , D. and Mellouk، نويسنده , , M. and Sarrà، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
16
From page :
269
To page :
284
Abstract :
We deal with the following general kind of stochastic partial differential equations:Lu(t,x)=α(u(t,x))Ḟ(t,x)+β(u(t,x)), t⩾0, x∈Rdwith null initial conditions, L a second-order partial differential operator and F a Gaussian noise, white in time and correlated in space. Firstly, we prove that the solution u(t,x) possesses a smooth density pt,x for every t>0, x∈Rd. We use the tools of Malliavin Calculus. Secondly, we apply this general result to two particular cases: the d-dimensional spatial heat equation, d⩾1, and the wave equation, d∈{1,2}.
Keywords :
stochastic partial differential equation , Gaussian noise , Wave and heat equation , Malliavin Calculus
Journal title :
Stochastic Processes and their Applications
Serial Year :
2001
Journal title :
Stochastic Processes and their Applications
Record number :
1576826
Link To Document :
بازگشت