Title of article
Transfinite dimensions
Author/Authors
Fedorchuk، نويسنده , , Vitaly V.، نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 2008
Pages
21
From page
1888
To page
1908
Abstract
We investigate dimensions Ind m (m is an integer ⩾2 or m = ∞ ) introduced in [V.V. Fedorchuk, Weakly infinite-dimensional spaces, Uspekhi Mat. Nauk 62 (2) (2007) 109–164]. These dimensions have intrinsic properties similar to those of the classical transfinite dimension Ind = Ind 2 . In particular,
d m X < ω 1 for every countable dimensional metrizable compactum X;
ery normal space X has a compactification bX with w b X = w X and Ind m b X ⩽ Ind m X .
er, if IndX is defined (respectively IndX is finite), then Ind m X is defined (respectively Ind m X is finite) for every m.
Keywords
Transfinite inductive dimension , Countable dimensional space , Compactification
Journal title
Topology and its Applications
Serial Year
2008
Journal title
Topology and its Applications
Record number
1577617
Link To Document