Title of article :
Uniqueness of the generators of the 2D Euler and Navier–Stokes flows
Author/Authors :
Albeverio، نويسنده , , S. and Barbu، نويسنده , , V. and Ferrario، نويسنده , , B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
14
From page :
2071
To page :
2084
Abstract :
A uniqueness result is proven for the infinitesimal generator associated with the 2D Euler flow with periodic boundary conditions in the space L 2 ( μ ) with respect to the natural Gibbs measure μ given by the enstrophy. This result remains true for the generator of the stochastic process associated with a 2D Navier–Stokes equation perturbed by a space–time Gaussian white noise force. The corresponding Liouville operator N defined on the space C b , cyl 1 of smooth cylinder bounded functions has a unique skew-adjoint m -dissipative extension in the class of closed operators in L 2 ( μ ) × V ′ where V = D ( N ¯ ) .
Keywords :
Euler and Navier–Stokes flow , invariant measure , Liouville and Kolmogorov generators
Journal title :
Stochastic Processes and their Applications
Serial Year :
2008
Journal title :
Stochastic Processes and their Applications
Record number :
1578035
Link To Document :
بازگشت