Title of article :
Asymptotic theory for the multidimensional random on-line nearest-neighbour graph
Author/Authors :
Wade، نويسنده , , Andrew R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
23
From page :
1889
To page :
1911
Abstract :
The on-line nearest-neighbour graph on a sequence of n uniform random points in ( 0 , 1 ) d ( d ∈ N ) joins each point after the first to its nearest neighbour amongst its predecessors. For the total power-weighted edge-length of this graph, with weight exponent α ∈ ( 0 , d / 2 ] , we prove O ( max { n 1 − ( 2 α / d ) , log n } ) upper bounds on the variance. On the other hand, we give an n → ∞ large-sample convergence result for the total power-weighted edge-length when α > d / 2 . We prove corresponding results when the underlying point set is a Poisson process of intensity n .
Keywords :
Variance asymptotics , Martingale differences , Random spatial graphs , Network evolution
Journal title :
Stochastic Processes and their Applications
Serial Year :
2009
Journal title :
Stochastic Processes and their Applications
Record number :
1578131
Link To Document :
بازگشت