Title of article :
Scaling limit for the diffusion exit problem in the Levinson case
Author/Authors :
Monter، نويسنده , , Sergio Angel Almada and Bakhtin، نويسنده , , Yuri، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
The exit problem for small perturbations of a dynamical system in a domain is considered. It is assumed that the unperturbed dynamical system and the domain satisfy the Levinson conditions. We assume that the random perturbation affects the driving vector field and the initial condition, and each of the components of the perturbation follows a scaling limit. We derive the joint scaling limit for the random exit time and exit point. We use this result to study the asymptotics of the exit time for 1D diffusions conditioned on rare events.
Keywords :
Small noise , Levinson case , Exit problem , Rare event
Journal title :
Stochastic Processes and their Applications
Journal title :
Stochastic Processes and their Applications