Title of article :
Context tree selection: A unifying view
Author/Authors :
Garivier، نويسنده , , A. and Leonardi، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Context tree models have been introduced by Rissanen in [25] as a parsimonious generalization of Markov models. Since then, they have been widely used in applied probability and statistics. The present paper investigates non-asymptotic properties of two popular procedures of context tree estimation: Rissanen’s algorithm Context and penalized maximum likelihood. First showing how they are related, we prove finite horizon bounds for the probability of over- and under-estimation. Concerning over-estimation, no boundedness or loss-of-memory conditions are required: the proof relies on new deviation inequalities for empirical probabilities of independent interest. The under-estimation properties rely on classical hypotheses for processes of infinite memory. These results improve on and generalize the bounds obtained in Duarte et al. (2006) [12], Galves et al. (2008) [18], Galves and Leonardi (2008) [17], Leonardi (2010) [22], refining asymptotic results of Bühlmann and Wyner (1999) [4] and Csiszár and Talata (2006) [9].
Keywords :
Variable length Markov chains , Bayesian Information Criterion , Deviation inequalities , Algorithm Context , Penalized maximum likelihood , Model selection
Journal title :
Stochastic Processes and their Applications
Journal title :
Stochastic Processes and their Applications