Title of article :
Consensus in the two-state Axelrod model
Author/Authors :
R. and Lanchier، نويسنده , , Nicolas and Schweinsberg، نويسنده , , Jason، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
17
From page :
3701
To page :
3717
Abstract :
The Axelrod model is a spatial stochastic model for the dynamics of cultures which, similar to the voter model, includes social influence, but differs from the latter by also accounting for another social factor called homophily, the tendency to interact more frequently with individuals who are more similar. Each individual is characterized by its opinions about a finite number of cultural features, each of which can assume the same finite number of states. Pairs of adjacent individuals interact at a rate equal to the fraction of features they have in common, thus modeling homophily, which results in the interacting pair having one more cultural feature in common, thus modeling social influence. It has been conjectured based on numerical simulations that the one-dimensional Axelrod model clusters when the number of features exceeds the number of states per feature. In this article, we prove this conjecture for the two-state model with an arbitrary number of features.
Keywords :
Interacting particle systems , Axelrod model , Annihilating random walks
Journal title :
Stochastic Processes and their Applications
Serial Year :
2012
Journal title :
Stochastic Processes and their Applications
Record number :
1578725
Link To Document :
بازگشت