Title of article :
Multicoherence of Whitney levels
Author/Authors :
Illanes، نويسنده , , Alejandro، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1996
Pages :
15
From page :
251
To page :
265
Abstract :
Let X be a Peano continuum and μ : C(X) → [0, 1] a Whitney map with C(X) the hyperspace of subcontinua of X. For a connected space Y, let r(Y) denote the multicoherence degree of Y. In this paper we prove: 1. s ⩽ t, then r(μ−1(s))⩾ r(μ−1(t)), μ−1(t)) is finite for every t > 0, 0 < m ⩽ r(X), then there exists a Whitney map ν : C(X) → [0,1] and there exists t ϵ [0,1] such that r(ν−1(t)) = m, and is a simple closed curve if and only if r(μ−1(t)) > 0 for every t < 1.
Keywords :
Hyperspaces , Whitney levels , Multicoherence degree , Unicoherence
Journal title :
Topology and its Applications
Serial Year :
1996
Journal title :
Topology and its Applications
Record number :
1578810
Link To Document :
بازگشت