Title of article :
Posterior consistency via precision operators for Bayesian nonparametric drift estimation in SDEs
Author/Authors :
Pokern، نويسنده , , Y. and Stuart، نويسنده , , A.M. and van Zanten، نويسنده , , J.H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
26
From page :
603
To page :
628
Abstract :
We study a Bayesian approach to nonparametric estimation of the periodic drift function of a one-dimensional diffusion from continuous-time data. Rewriting the likelihood in terms of local time of the process, and specifying a Gaussian prior with precision operator of differential form, we show that the posterior is also Gaussian with the precision operator also of differential form. The resulting expressions are explicit and lead to algorithms which are readily implementable. Using new functional limit theorems for the local time of diffusions on the circle, we bound the rate at which the posterior contracts around the true drift function.
Keywords :
posterior consistency , Nonparametric Bayesian estimation , stochastic differential equation
Journal title :
Stochastic Processes and their Applications
Serial Year :
2013
Journal title :
Stochastic Processes and their Applications
Record number :
1578818
Link To Document :
بازگشت