Title of article :
On the metrizability number and related invariants of spaces, II
Author/Authors :
Ismail ، نويسنده , , M. and Szymanski، نويسنده , , A.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1996
Pages :
13
From page :
179
To page :
191
Abstract :
This is a continuation of the study of the metrizability number and the first countability number for various classes of compact Hausdorff spaces started by Ismail and Szymanski (1995). It is shown that if X is a compact LOTS, then w(X) ⩽ ω·m(X). Also, if X is the one-point compactification of an uncountable discrete space, then ω1 ⩽ m(Xω) ⩽ 2ω. Furthermore, under the singular cardinals hypothesis, for a large class of spaces of cardinality > 2ω, the first countability number, the metrizability number and the cardinality coincide.
Keywords :
LOTS , Weight , Metrizability number
Journal title :
Topology and its Applications
Serial Year :
1996
Journal title :
Topology and its Applications
Record number :
1578890
Link To Document :
بازگشت