Title of article :
On non-parametric estimation of the Lévy kernel of Markov processes
Author/Authors :
Ueltzhِfer، نويسنده , , Florian A.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
47
From page :
3663
To page :
3709
Abstract :
We consider a recurrent Markov process which is an Itô semi-martingale. The Lévy kernel describes the law of its jumps. Based on observations X 0 , X Δ , … , X n Δ , we construct an estimator for the Lévy kernel’s density. We prove its consistency (as n Δ → ∞ and Δ → 0 ) and a central limit theorem. In the positive recurrent case, our estimator is asymptotically normal; in the null recurrent case, it is asymptotically mixed normal. Our estimator’s rate of convergence equals the non-parametric minimax rate of smooth density estimation. The asymptotic bias and variance are analogous to those of the classical Nadaraya–Watson estimator for conditional densities. Asymptotic confidence intervals are provided.
Keywords :
Itô semi-martingale , Lévy system , Lévy kernel , Null recurrence , Density estimation , Central Limit Theorem , Markov process
Journal title :
Stochastic Processes and their Applications
Serial Year :
2013
Journal title :
Stochastic Processes and their Applications
Record number :
1579081
Link To Document :
بازگشت