Title of article :
Pseudocompact Malʹtsev spaces
Author/Authors :
Reznichenko، نويسنده , , E.A. and Uspenskij، نويسنده , , V.V.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1998
Pages :
22
From page :
83
To page :
104
Abstract :
A theorem due to Comfort and Ross asserts that the product of any family of pseudocompact topological groups is pseudocompact. We generalize this theorem to the case of Malʹtsev spaces. A Malʹtsev operation on a space X is a continuous function ƒ:X3 → X satisfying the identity ƒ(x, y, y) = ƒ(y, y, x) = x for all x, y ϵ X. A topological space is Malʹtsev if it admits a Malʹtsev operation. We prove that every Malʹtsev operation on a pseudocompact space X can be extended to a Malʹtsev operation on βX. It follows that: 1. X is a pseudocompact Malʹtsev space, then βX is Dugundji; e product of any family of pseudocompact Malʹtsev spaces is pseudocompact.
Keywords :
Topological group , Pseudocompact , Malיtsev operation , Separately continuous , Dugundji compact , Corson compact , Eberlein compact , Caliber , Precaliber , Small diagonal , Preiss-Simon theorem , Countably compact , Retract , Grothendieck theorem
Journal title :
Topology and its Applications
Serial Year :
1998
Journal title :
Topology and its Applications
Record number :
1579226
Link To Document :
بازگشت