Title of article :
Irresolvable and submaximal spaces: Homogeneity versus σ-discreteness and new ZFC examples
Author/Authors :
Alas، نويسنده , , O.T. and Sanchis، نويسنده , , M. and Tkac?enko، نويسنده , , M.G. and Tkachuk، نويسنده , , V.V. and Wilson، نويسنده , , R.G.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2000
Pages :
15
From page :
259
To page :
273
Abstract :
An example of an irresolvable dense subspace of {0,1}c is constructed in ZFC. We prove that there can be no dense maximal subspace in a product of first countable spaces, while under Boothʹs Lemma there exists a dense submaximal subspace in [0,1]c. It is established that under the axiom of constructibility any submaximal Hausdorff space is σ-discrete. Hence it is consistent that there are no submaximal normal connected spaces. If there exists a measurable cardinal, then there are models of ZFC with non-σ-discrete maximal spaces. We prove that any homogeneous irresolvable space of non-measurable cardinality is of first category. In particular, any homogeneous submaximal space is strongly σ-discrete if there are no measurable cardinals.
Keywords :
Irresolvable space , sep Maximal space , Submaximal space , Homogeneous space
Journal title :
Topology and its Applications
Serial Year :
2000
Journal title :
Topology and its Applications
Record number :
1579630
Link To Document :
بازگشت