Title of article :
The Baire Category Theorem and choice
Author/Authors :
Herrlich، نويسنده , , Horst and Keremedis، نويسنده , , Kyriakos، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2000
Pages :
11
From page :
157
To page :
167
Abstract :
The status of the Baire Category Theorem in ZF (i.e., Zermelo–Fraenkel set theory without the Axiom of Choice) is investigated. l results: Baire Category Theorem holds for compact pseudometric spaces. Axiom of Countable Choice is equivalent to the Baire Category Theorem for countable products of compact pseudometric spaces. Axiom of Dependent Choice is equivalent to the Baire Category Theorem for countable products of compact Hausdorff spaces. Baire Category Theorem for B -compact regular spaces is equivalent to the conjunction of the Axiom of Dependent Choice and the Weak Ultrafilter Theorem.
Keywords :
Axiom of Dependent Choice , Axiom of Countable Choice , Countable Tychonoff Theorem , Compact topological space , Complete (pseudo) metric space , Weak Ultrafilter Theorem , Baire category theorem
Journal title :
Topology and its Applications
Serial Year :
2000
Journal title :
Topology and its Applications
Record number :
1579648
Link To Document :
بازگشت