Title of article :
Nonshrinking open covers and K. Moritaʹs duality conjectures
Author/Authors :
Balogh، نويسنده , , Z.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2001
Pages :
9
From page :
333
To page :
341
Abstract :
For every uncountable cardinal κ we construct, in ZFC, a space Xκ such that (a) oduct of Xκ with every metrizable space is normal; an increasing ω1-cover by open sets that has no refinement by ⩽κ many closed sets. answers a question of M.E. Rudin. It also proves a conjecture of K. Morita on a characterization of metrizability in terms normality of products.
Keywords :
?1-Dowker space , normal , Morita P-space , Metrizability
Journal title :
Topology and its Applications
Serial Year :
2001
Journal title :
Topology and its Applications
Record number :
1579782
Link To Document :
بازگشت