Title of article :
Multi-FNN identification based on HCM clustering and evolutionary fuzzy granulation
Author/Authors :
Oh، نويسنده , , Sung-Kwun and Pedrycz، نويسنده , , Witold and Park، نويسنده , , Ho-Sung، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
In this paper, we introduce a general category of multi-fuzzy-neural networks (FNNs), analyze their underlying architecture and propose a comprehensive identification framework. The proposed multi-FNNs dwells on a concept of linear fuzzy inference-based FNNs. The design of the model uses a standard HCM (Hard C-Means) clustering algorithm and carries out an evolutionary fuzzy granulation of experimental data. The performance of the model is quantified through a series of experimental studies involving synthetic and real-world data.
Keywords :
Evolutionary fuzzy granulation , Multi-FNN (fuzzy-neural networks) , Linear fuzzy inference , Genetic algorithms (GAs) , HCM clustering , System identification
Journal title :
Simulation Modelling Practice and Theory
Journal title :
Simulation Modelling Practice and Theory