Title of article :
Properties of function spaces reflected by uniformly dense subspaces
Author/Authors :
Tkachuk، نويسنده , , V.V.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2003
Pages :
11
From page :
183
To page :
193
Abstract :
A set A⊂Cp(X) is uniformly dense in Cp(X) if, for any f∈Cp(X) and any ε>0, there is g∈A such that |g(x)−f(x)|<ε for all x∈X. We prove that, for many properties P, if a uniformly dense subspace of Cp(X) has P then the whole Cp(X) has P. This is true, in particular, for P∈{Lindelöf Σ-property, tightness ⩽κ, network weight ⩽κ, Fréchet–Urysohn property}. If Cp(X) has a uniformly dense σ-compact subspace then X is compact. We give an example of a compact space X such that ψ(Cp(X))>ω while Cp(X) has a uniformly dense subspace of countable pseudocharacter.
Keywords :
Lindel?f , Countable compactness , ?-property , Uniformly dense , Pointwise convergence topology , compactness , Pseudocompactness
Journal title :
Topology and its Applications
Serial Year :
2003
Journal title :
Topology and its Applications
Record number :
1580400
Link To Document :
بازگشت