Title of article :
Minimally separating sets, mediatrices, and Brillouin spaces
Author/Authors :
Veerman، نويسنده , , J.J.P. and Bernhard، نويسنده , , James، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2006
Pages :
13
From page :
1421
To page :
1433
Abstract :
Brillouin zones and their boundaries were studied in [J.J.P. Veerman et al., Comm. Math. Phys. 212 (3) (2000) 725] because they play an important role in focal decomposition as first defined by Peixoto in [J. Differential Equations 44 (1982) 271] and in physics [N.W. Ashcroft, N.D. Mermin, Solid State Physics, Holt, Rhinehart, and Winston, 1976; L. Brillouin, Wave Propagation in Periodic Structures, Dover, 1953]. In so-called Brillouin spaces, the boundaries of the Brillouin zones have certain regularity properties which imply that they consist of pieces of mediatrices (or equidistant sets). rpose of this note is two-fold. First, we give some simple conditions on a metric space which are sufficient for it to be a Brillouin space. These conditions show, for example, that all compact, connected Riemannian manifolds with their usual distance functions are Brillouin spaces. Second, we exhibit a restriction on the Z 2 -homology of mediatrices in such manifolds in terms of the Z 2 -homology of the manifolds themselves, based on the fact that they are Brillouin spaces. (This will used to obtain a classification up to homeomorphism of surface mediatrices in forthcoming paper [J. Bernhard, J.J.P. Veerman, The topology of surface mediatrices, Portland State University].)
Keywords :
Minimally separating sets , Geodesics , Homology
Journal title :
Topology and its Applications
Serial Year :
2006
Journal title :
Topology and its Applications
Record number :
1580760
Link To Document :
بازگشت