Title of article :
Homogeneous continua for which the set function is continuous
Author/Authors :
Macيas، نويسنده , , Sergio، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2006
Pages :
5
From page :
3397
To page :
3401
Abstract :
We answer in the negative the conjecture of Sam B. Nadler Jr and David P. Bellamy which says “Let X be a homogeneous one-dimensional continuum. Then T is continuous for X”. We characterize the class of homogeneous continua for which T is continuous.
Keywords :
Upper semicontinuous decomposition , Terminal subcontinuum , Aposyndetic continuum , Continuous decomposition , Continuum , Decomposable continuum , ?-homeomorphism , Hausdorff metric , Homogeneous continuum , Hyperspace , Property of Effros , Indecomposable continuum , Pseudo-arc , Set function T , T X Z -continuous map , Circle of pseudo-arcs
Journal title :
Topology and its Applications
Serial Year :
2006
Journal title :
Topology and its Applications
Record number :
1581028
Link To Document :
بازگشت