Title of article :
An asymptotic formula for the ranks of homotopy groups
Author/Authors :
Felix، نويسنده , , Yves and Halperin، نويسنده , , Steve and Thomas، نويسنده , , Jean-Claude، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2006
Abstract :
Let X be a finite simply connected CW complex of dimension n. The loop space homology H ∗ ( Ω X ; Q ) is the universal enveloping algebra of a graded Lie algebra L X isomorphic with π ∗ − 1 ( X ) ⊗ Q . Let Q X ⊂ L X be a minimal generating subspace, and set α = lim sup i log rk π i ( X ) i .
m: If dim L X = ∞ and lim sup ( dim ( Q X ) k ) 1 / k < lim sup dim ( L X ) k 1 / k , then ∑ i = 1 n − 1 rk π k + i ( X ) = e ( α + ε k ) k , where ε k → 0 as k → ∞ . In particular ∑ i = 1 n − 1 rk π k + i ( X ) grows exponentially in k.
Keywords :
Exponential growth , Homotopy Lie algebra , Graded Lie algebra
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications