Title of article
Nonexistence of Bonatti–Langevin examples of Anosov flows on closed four manifolds
Author/Authors
Carballo، نويسنده , , C.M. and Morales، نويسنده , , C.A. and San Martin، نويسنده , , B.، نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 2007
Pages
7
From page
326
To page
332
Abstract
Bonatti and Langevin constructed an Anosov flow on a closed 3-manifold with a transverse torus intersecting all orbits except one [C. Bonatti, R. Langevin, Un exemple de flot dʹAnosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (4) (1994), 633–643]. We shall prove that these flows cannot be constructed on closed 4-manifolds. More precisely, there are no Anosov flows on closed 4-manifolds with a closed, incompressible, transverse submanifold intersecting all orbits except finitely many closed ones. The proof relies on the analysis of the trace of the weak invariant foliations of the flow on the transverse submanifold.
Keywords
Incompressible Submanifold , Four manifold , Anosov flow
Journal title
Topology and its Applications
Serial Year
2007
Journal title
Topology and its Applications
Record number
1581100
Link To Document