• Title of article

    Nonexistence of Bonatti–Langevin examples of Anosov flows on closed four manifolds

  • Author/Authors

    Carballo، نويسنده , , C.M. and Morales، نويسنده , , C.A. and San Martin، نويسنده , , B.، نويسنده ,

  • Issue Information
    دوماهنامه با شماره پیاپی سال 2007
  • Pages
    7
  • From page
    326
  • To page
    332
  • Abstract
    Bonatti and Langevin constructed an Anosov flow on a closed 3-manifold with a transverse torus intersecting all orbits except one [C. Bonatti, R. Langevin, Un exemple de flot dʹAnosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (4) (1994), 633–643]. We shall prove that these flows cannot be constructed on closed 4-manifolds. More precisely, there are no Anosov flows on closed 4-manifolds with a closed, incompressible, transverse submanifold intersecting all orbits except finitely many closed ones. The proof relies on the analysis of the trace of the weak invariant foliations of the flow on the transverse submanifold.
  • Keywords
    Incompressible Submanifold , Four manifold , Anosov flow
  • Journal title
    Topology and its Applications
  • Serial Year
    2007
  • Journal title
    Topology and its Applications
  • Record number

    1581100